Natural Logic in Natural Language Inference

Roy Rinberg

1. Building up to Natural Logic

Monotonicity is the starting point of natural logic. But Natural logic stems specifically from all the problems generated by only looking to monotonicity

- a. Nobody can enter without a valid passport ⊨ Nobody can enter without a passport.
- b. Whiskers is a cat \vDash Whiskers is not a poodle.

But monotonicity does not give us anyway to handle this - it lacks semantic exclusion.

Sánchez Valencia (1991) :

entailment is <u>semantic containment</u> relation \sqsubseteq analogous to the <u>set containment</u> relation \subseteq

2-way entailment:

ENTAILMENT
$$\stackrel{\text{def}}{=} \{ \langle p, h \rangle \in \mathbf{Dom}_T^2 : p \models h \}$$

NON-ENTAILMENT $\stackrel{\text{def}}{=} \{ \langle p, h \rangle \in \mathbf{Dom}_T^2 : p \not\models h \}$

3-way entailment

ENTAILMENT
$$\stackrel{\text{def}}{=} \{ \langle p, h \rangle \in \mathbf{Dom}_T^2 : p \models h \}$$

CONTRADICTION $\stackrel{\text{def}}{=} \{ \langle p, h \rangle \in \mathbf{Dom}_T^2 : p \models \neg h \}$
COMPATIBILITY $\stackrel{\text{def}}{=} \{ \langle p, h \rangle \in \mathbf{Dom}_T^2 : p \not\models h \land p \not\models \neg h \}$

Let's cut the cake, and see how these things differ:

	2-way	3-way	containment			
p. X is a couch h. X is a sofa	ENITA IL MENIT		<i>p</i> = <i>h</i>			
p. X is a crow h. X is a bird	ENTAILMENT	ENTAILMENT	$p \sqsubset h$			
p. X is a fish h. X is a carp		COMPATIBLITY	$p \sqsupset h$			
p. X is a hippo h. X is hungry	NON-ENTAILMENT	COMPATIBILITY				
p. X is a cat h. X is a dog		CONTRADICTION	NO-CONTAINMENT			

Best of both worlds:

Problem: A universe U contains $2^{|U|}$ sets, $4^{|U|}$ ordered pairs of sets, and thus $2^{4^{|U|}}$ possible set relations.

We want:

(a) include familiar and useful relations expressing equivalence, containment, and exclusion(b) form a partition of the space of ordered pairs of sets (disjoint cover)

label	definition	meaning
00	$\overline{x} \cap \overline{y}$	in neither x nor y
01	$\overline{x} \cap y$	in y but not x
10	$x \cap \overline{y}$	in x but not y
11	$x \cap y$	in both x and y

For any two p and h: we realize that in a typical Venn diagram there are 4 regions, We take 4 operations, and think about what they might be. We get $2^4 = 16$ cases, drawn below:

In math:

relation	constraint on x	constraint on y	constraint on $\langle x,y\rangle$
R_{0000}	$\emptyset = x = U$	$\emptyset = y = U$	x = y
R_{0001}	$\emptyset \subset x = U$	$\emptyset \subset y = U$	x = y
R_{0010}	$\emptyset \subset x = U$	$\emptyset = y \subset U$	$x \supset y$
R_{0011}	$\emptyset \subset x = U$	$\emptyset \subset y \subset U$	$x \supset y$
R_{0100}	$\emptyset = x \subset U$	$\emptyset \subset y = U$	$x \subset y$
R_{0101}	$\emptyset \subset x \subset U$	$\emptyset \subset y = U$	$x \subset y$
R_{0110}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x\cap y=\emptyset\wedge x\cup y=U$
R_{0111}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x\cap y\neq \emptyset \wedge x\cup y=U$
R_{1000}	$\emptyset = x \subset U$	$\emptyset = y \subset U$	x = y
R_{1001}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	x = y
R_{1010}	$\emptyset \subset x \subset U$	$\emptyset = y \subset U$	$x \supset y$
R_{1011}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x \supset y$
R_{1100}	$\emptyset = x \subset U$	$\emptyset \subset y \subset U$	$x \subset y$
R_{1101}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x \subset y$
R_{1110}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x\cap y=\emptyset\wedge x\cup y\neq U$
R_{1111}	$\emptyset \subset x \subset U$	$\emptyset \subset y \subset U$	$x\cap y\neq \emptyset \wedge x\cup y\neq U$
			$\ldots \land x \not\subseteq y \land x \not\supseteq y$

But, 16 is still kind of a lot.

Lucky for us, Contradictions and tautologies may be common in logic textbooks, but they are rare in everyday speech.

Examples:

R0000 is an extremely degenerate case: Universe is empty.
Singleton degeneracies:
Relations R0001, R0010, R0100, and R1000 cover the cases and both x and y are either empty or universal.
i.e. X is a female or not. X is a man or not.

9 of these cases are "degenerate cases" due to properties of natural language. The nine relations in R mentioned so far (namely, R0000, R0001, R0010, R0101, R0100, R0101, R1000, R1010, and R1100) are boundary cases in which either x or y is either empty or universal.

So, we get rid of these 9. We are left with 7:

symbol ¹⁰	name	example	set theoretic definition ¹¹	in \mathfrak{R}
$x \equiv y$	equivalence	$\mathit{couch} \equiv \mathit{sofa}$	x = y	R_{1001}
$x \sqsubset y$	forward entailment	$crow \sqsubseteq bird$	$x \subset y$	R_{1101}
$x \sqsupseteq y$	reverse entailment	$Asian \ \Box \ Thai$	$x \supset y$	R_{1011}
$x \land y$	negation	$able \ \land \ unable$	$x\cap y=\emptyset\wedge x\cup y=U$	R_{0110}
$x \mid y$	alternation	$cat \mid dog$	$x\cap y=\emptyset\wedge x\cup y\neq U$	R_{1110}
$x \smile y$	cover	animal \sim non-ape	$x\cap y\neq \emptyset \wedge x\cup y=U$	R_{0111}
$x \ \# \ y$	independence	$hungry \ \# \ hippo$	(all other cases)	R_{1111}

How to convert from Set relations to Entailment relations :

1- Restrict on types

2- x and y belong to relation R1101 iff y holds in every model where x holds (but not vice-versa)

2. Compositional Semantics.

Joins

$$R \bowtie S \stackrel{\text{\tiny def}}{=} \{ \langle x, z \rangle : \exists y \ (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$$

Some joins are clear:

 $\Box \bowtie \Box = \Box$ $\Box \bowtie \Box = \Box$ $\land \bowtie \land = \equiv$ $\forall R \qquad R \bowtie \equiv = R$ $\forall R \qquad \equiv \bowtie R = R$

Not all joins are deterministic:

$x \mid y$	$y \mid z$	x~?~z
$gasoline \mid water$	$water \mid petrol$	$gasoline \equiv petrol$
$pistol \mid knife$	$knife \mid gun$	$pistol \sqsubseteq gun$
$dog \mid cat$	$cat \mid terrier$	$dog \ \square \ terrier$
$rose \mid orchid$	$orchid \mid daisy$	$rose \mid daisy$
$woman \mid frog$	frog Eskimo	woman # Eskimo

So, for now, there is a method for computing joins – both deterministic and not.

3. Compositional Semantics.

If two linguistic expressions differ by a single atomic edit (deletion, insertion, or substitution), then the entailment relation between them depends on two factors:

1. The lexical entailment relation generated by the edit;

$$\beta(x, e(x)) = \beta(e) = X$$

2. How this lexical entailment relation is affected by <u>semantic composition</u> with the remainder of the expression (the context). Projectivity

$$\beta(x, y) = Y$$

$$\beta(f(x), f(y)) = ?$$

Note: assumption: tense and aspect matter little in inference

3. A. Entailment Relations: Substitution, Deletion, Insertion

Basic example:

x = red car e = sub(car, convertible)Then $\beta(e) = \square$ (because convertible is a hyponym of car).

If e = del(red), then $\beta(e) = \Box$ (because red is an intersective modifier).

Substitutions of open-class terms

Synonyms :	\equiv relation (sofa \equiv couch, happy \equiv glad, forbid \equiv prohibit);
hyponym-hypernym pairs :	\sqsubset relation (crow \sqsubseteq bird, frigid \sqsubset cold, soar \sqsubset rise);
antonyms :	relation (hot cold, rise fall, advocate opponent).

Example:

a = unmarried man b = bachelor

$$\beta(sub(a,b)) = \equiv$$

Mostly use WordNet for Synonomy, hyponymy, antonymy, etc.

Substitutions of closed-class terms

Generalized Quantifiers: "Some", "All",

i.e. "every" entails "some" I have four children ⊏ I have two children I have four children | I have two children

Generic deletions and insertions

Generally governed by Monotonicity Example: car which has been parked outside since last week \sqsubset car

Special deletions and insertions

Factives vs implicatives

Implicatives:

Remember To: Two-way Implicative ++|--Remember That: Factive

a. She remembered to lock the door. ENTAILS. She locked the door.

b. She did **not** remember to lock the door. ENTAILS. She did **not** lock the door.

c. She remembered that she locked the door. PRESUPPOSES. She locked the door.

d. She did **not** remember that she locked the door. PRESUPPOSES. She locked the door

Unfortunately – the process for determining factive vs implicative is not straightforward: <u>"The sobering finding of this study</u> that we are now in the progress of replicating with a more careful experimental design suggests that some very basic inferences such as whether the <u>event</u> described by an infinitival complement <u>happened</u> or not depend on opinions that <u>are not</u> <u>part of the literal meaning of the sentence</u>. This is a difficult problem for compositional semantics and for Natural Logic as well" – Kartunnen (2015)

Non-subsective adjectives

i.e. fake, former, and alleged. T

deleting fake or former seems to generate the | relation (fake diamond | diamond)

deleting alleged seems to generate the # relation (alleged spy # spy).

3. B. Semantic Composition : Lexical Edits: Projections

Projection - through Monotonicity: what we know already

Nobody can enter without pants – (nobody(can((without pants) enter)) Pants ⊏ Clothes Without : ↓ Without↓ pants ⊐ Without clothes Can : ↑ can↑ (without pants) enter ⊐ can (without clothes) enter Nobody : ↓

Nobody \downarrow (can \uparrow (without \downarrow pants) enter) \sqsubset Nobody(can(without clothes) enter)

Projection – generalized from monotonicity

 $\beta(x, y) \in \{entailment \ relations\}\$ $f \in \{connectives\}\$ $\beta(f(x), f(y)) = ? \in \{entailment \ relations\}\$

In theory, for each f there are 7^7 (823,543) possible entailment projections signatures:

≡			^		_	#
•	п	C	П	Б	Б	C
A	В	C	D	E	Г	G

Let's look at projectivity of logical connectives:

			pro	jecti	vity		
connective	≡			^		\smile	#
negation (not)	≡			۸	\smile		#
conjunction (and) / intersection	≡					#	#
disjunction (or)	≡			\smile	#	\smile	#
conditional (if) (antecedent)	≡			#	#	#	#
conditional (if) (consequent)	≡					#	#
biconditional $(if and only if)$	≡	#	#	^	#	#	#

Projectivity of quantifiers:

	projectivity for 1 st argument				pre	ojecti	vity	for 2	nd ar	gume	ent			
quantifier	≡			^		\smile	#	≡		\square	^		\smile	#
some	≡			<u>_</u> †	#	\smile^{\dagger}	#	≡			\bigcirc^{\dagger}	#	\bigcirc^{\dagger}	#
no	≡			†	#	†	#	≡			†	#	†	#
every	≡			‡	#	‡	#	≡			†	†	#	#
not every	≡			\smile^{\ddagger}	#	\smile^{\ddagger}	#	≡			\smile^{\dagger}	\smile^{\dagger}	#	#
$at\ least\ two$	≡			#	#	#	#	≡		\square	#	#	#	#
most	≡	#	#	#	#	#	#	≡		\square			#	#
exactly one	≡	#	#	#	#	#	#	≡	#	#	#	#	#	#
$all \ but \ one$	≡	#	#	#	#	#	#	≡	#	#	#	#	#	#

Example: most people were early | most people were late. most fish talk # most birds talk

So... Notice a lot of #

Some caveats are in order.

Certain approximations have been made (except in the case of negation, which is exact).

<u>The projection of a given entailment relation can depend on the value of the other argument to the function</u>. That is, if we are given B(x; y), and we are trying to determine its projection B(f(x, z); f(y, z)), the answer can depend not only on the properties of f, but also on the properties of z.

x = French man y = European man z = Parisian

4. Putting it all together : NatLog - ALGORITHM

- 1. Find a sequence of atomic edits $\langle e_1, ..., e_n \rangle$ which transforms p into h: h= $(e_n \circ ... \circ e_1) \circ p$ Let us say that $x_i = e_i \circ x_{i-1}$
- 2. For each e_i
 - a. Determine the lexical entailment relation $\beta(e_i) = \beta(x_{i-1}, e_i(x_{i-1}))$
 - b. Find the entailment relation $\beta(x_{i+1}, x_i) \forall i$
- 3. Join atomic entailment relations across the sequence of edits, as in section 5.6: $B(p,h) = B(x_0, x_n) = B(x_0, e_1) \bowtie \cdots \bowtie B(x_{i-1}, e_i) \bowtie \cdots \bowtie B(x_{n-1}, e_n)$

System	Р %	R %	Acc $\%$
baseline: most common class	55.7	100.0	55.7
bag of words	59.7	87.2	57.4
NatLog 2007	68.9	60.8	59.6
NatLog 2008	89.3	65.7	70.5

Table 7.3: Performance of various systems on 183 single-premise FraCaS problems (three-way classification). The columns show precision and recall for the YES class, and accuracy.

References:

MacCartney, W. (2009). Natural Language Inference. Stanford. Pavlick, E. (2017. Compositional Lexical Semantics in Natural Language Inference. UPenn. Kartunnen, L. (2015). From Natural Logic to Natural Reasoning. Stanford Moss, L (Unpublished). Logic from Language. Indiana University, Bloomington.