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Natural Logic in Natural Language Inferences 
Roy Rinberg 

 
 
 
Introduction and outline 
 

In this paper, I seek to discuss the role of Natural Logic in computing natural language 
inferences. I assume a basic understanding of logic and semantic concepts, but will attempt to 
build from first principles so that this paper can be used as a review article for people bridging 
the gap between linguistics and computer science. By the end of this paper, the reader should feel 
familiar with Natural Logic and have a basic understanding of what research is needed in order 
to improve Natural Logic. 

This paper draws primarily from Bill MacCartney’s 2009 PhD thesis, but also relies on 
more modern sources like, Larry Moss, Lauri Karttunen, and Ellie Pavlick.  Section 1 is 
structured as a lesson on the rationale behind developing Natural Logic and seeks to develop the 
entailment relations that will serve as the foundation for Natural Logic. Section 2 discusses the 
tools used for generating semantic entailments compositionally; first through lexical entailments 
- as in substituting ‘car’ for ‘convertible’ in the expression “red car”; and then through the 
projection of a semantic function onto expressions - defining how a specific edit changes the 
entailment relation between two x and y. Section 3 quickly puts together a generic algorithm for 
generating an entailment relation for any two expressions p and h. Finally, section 4 briefly 
discusses problems and possible research in Natural Logic.  
 
1. What is Natural Logic and how do we arrive at it? 
 

“Natural Logic attempts to do formal reasoning in natural language making use of 
syntactic structure and the semantic properties of lexical items and constructions. It contrasts 
with approaches that involve a translation from a natural to a formal language such as predicate 
calculus or a higher-order logic.” (Karttunen, 2015). 
 For this paper, I will assume a general familiarity with monotonicity. But as a short 
review: Monotonicity allows us to make inferences on the entailment of subclasses and super-
classes. ‘With’ is upwards entailing, and so, it entails more general statements. Without is 
downwards entailing, and so, entails more specific statements: 

 
Figure 1. Image describing Monotonicity (Karttunen, 2015) 

a. She did it with a knife  ENTAILS  she did it with a tool 
b. She did it without a tool  ENTAILS  she did it with a knife 
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Monotonicity is the starting point of natural logic. But Natural Logic stems specifically from 

the problems generated by only looking to monotonicity. Here are two, very simple inferences 
humans are willing to make. 

 

a. Nobody can enter without a valid passport  ⊨ Nobody can enter without a passport. 
b. Whiskers is a cat     ⊨ Whiskers is not a poodle. 
 

Monotonicity by itself provides no method for handling statement b – it lacks the ability to 
handle semantic exclusion. I wish to extend on the usefulness of monotonicity, and at the very 
least expand on it to include semantic exclusion. Historically, one approach semanticists have 
taken is to use set-theoretic categorizations for entailment, such as 3-way entailment relations: 

 
Where 𝐷𝑜𝑚! is the domain of declarative expressions and 𝐷𝑜𝑚!

!  is its Cartesian product. 
However, most formulations were unable to encode all types of relationship – 3-way entailment 
lacks reverse entailment, whereas formulations like monotonicity lack contradiction. This 
distinction is easily seen through the following figure: 

 
Figure 2. Image describing different entailment relations (MacCartney, 2009) 

 

Since, for this exercise, I am designing Natural Logic from scratch, I am allowed to 
choose exactly what entailment relations to use. The goal here is to find a set of entailment 
relations that partition the space of relations between expressions, in a natural, intuitive way. 
Ideally, every pair of expressions can be assigned to a unique entailment relation. 

It seems reasonable to accept the use of set relations to encode entailment relations, and 
decide on the best set of logical operations to encode the entailment relations that are important 
to us. Implicitly, I am now representing two expressions I wish to relate as sets of models which 
contain those elements that make the expressions true - though I will not use this formulation for 
any form of computation. 

MacCartney (2009) proposes a natural set of logical operations on the two sets, generated 
by the Venn diagram of the two sets. 
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Immediately, it is easy to see 16 kinds of relations between any two expressions: 

  
Figure 3. 16 elementary set relations ℜ (MacCartney, 2009) 

 

I am able to convert from set relations to entailment relations by extending the 
extensional meaning to an intensional meaning – namely, expressions of the same semantic type, 
x and y, belong to relation R1101 if and only if y holds in every model where x holds (but not 
vice-versa). This might seem problematic, as it is computational infeasible to compute an 
extension over an uncountable number of models; however, my usage of Natural Logic operates 
in the other direction – I will not provide a model and asking what entailment relation it has, but 
rather after assigning an entailment relation, I will ask whether or not a model has some property. 

These 16 relations (ℜ) encode every kind of entailment relationship between any two 
expressions and are the foundation for Natural Logic.  

I can classify the relations, looking for relationships that human beings do not use in natural 
language, and easily see that nine relations in ℜ, namely R0000, R0001, R0010, R0011, R0100, R0101, 
R1000, R1010, and R1100, are boundary cases in which either x or y is either empty or universal.  

Singleton degeneracies and other edge cases:  
The degenerate relations: R0000, R0001, R0010, R0100, R1000, R0011, R0101, R1010, and R1100 

cover the cases in which at least one of x or y are either empty or universal.  
i.e. x =All female presidents eat pie.  y = dogs who can type eat pie. 
i.e. x is a female or not. y is a man or not. 

However, while contradictions and tautologies may be common in logic textbooks, they are rare 
in everyday speech; these 9 degenerate relations do not tend to come up in natural language, 
outside of classrooms. It seems reasonable to focus on the 7 remaining relations, which are more 
common in natural language; MacCartney refers to these as the set 𝔅.  
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Figure 4. Seven basic entailment relations 𝔅 (MacCartney, 2009). 

 

𝔅 is the set that Natural Logic generally operates with, and is what I will continue to 
discuss in this review paper. I think it is important to note that this is a decision to make Natural 
Logic more convenient, not because there is a necessity to do so.  
 
2. Compositional Semantics 
 2.1 Joins 

At the root of semantics is the principle of compositionality – that if ‘John is sad and 
Mary is sad’, both ‘John is sad’ and ‘Mary is sad’. To build up to this in Natural Logic, I must 
now generate a principle for joining entailment relations. Even on an intuitive level, this makes 
sense – if I know how x relates to y, and how y relates to z, I suspect I can say something about 
how x relates to z. MacCartney utilized the bowtie operator ⋈, Join, to generate entailments 
relations compositionally. 

𝑅 ⋈ S ≡ {< x, y > : ∃y < x, y >∈ R ∧ < y, z >∈ S } 
Some of these joins are possible to prove logically, specifically - joining negation. However, for 
the most part, rules for joins can be constructed through human intuition and putting together 
evidence. Some joins have very clear progressions, and generally have a clear set of governing 
principles.   

⊏⋈⊏ =  ⊏ 
⊐⋈⊐ =  ⊐ 
^ ⋈ ^ =  ≡ 

∀𝑅 ∶ 𝑅 ⋈ ≡ =  𝑅 
∀𝑅 ∶  ≡ ⋈ R =  𝑅 

However, it is pretty clear that not all joins will create deterministic relationships. I present 
MacCartney’s example using alternation. With the same relationship between x and y, and y and 
z, I am able to generate almost every kind of relationship. 
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This problem of non-deterministic joining points to a much larger problem in computational 
semantics, and the overarching problem in Natural Logic – ultimately the entailment relations of 
words depends not on the relationships of the words, but on the semantic meaning of the words 
themselves. This problem will come up in other locations, but for now I will continue, wary of 
this issue. 
 

2.2 Semantic composition through lexical entailments 
Taking the (wrong, but simplifying) assumption: tense and aspect matter little in 

inferences, MacCartney (2009) claims that if two linguistic expressions differ by a single atomic 
edit (deletion, insertion, or substitution), then the entailment relation between them depends on 
two factors:   

1. The lexical entailment relation generated by the edit; 
𝛽 𝑥, 𝑒 𝑥 ≡ 𝛽 𝑒 =  𝑋 

2. How this lexical entailment relation is affected by semantic composition with the 
remainder of the expression (the context).  MacCartney refers to this as 
‘Projectivity’ 

𝛽 𝑥,𝑦 = 𝑌 
𝛽 𝑓(𝑥), 𝑓 𝑦 =? 

Here 𝛽 is the function mapping natural language expressions to their entailments. 
 

2.3 Lexical entailment  
The goal here is to generate some function that maps edits to entailments, such that making an 
edit generates an entailment relation between the original and edited sentences. There are three 
types of edits that are possible on a sentence: Substitution, Deletion, and Insertion. 
Though, prior to proposing a set of rules, I will begin with a concrete example:  

Example 1. 
Let 𝑥 = 𝑟𝑒𝑑 𝑐𝑎𝑟 
Let 𝑒 = 𝑠𝑢𝑏(𝑐𝑎𝑟, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒) 
𝛽 𝑒 =  𝛽 𝑟𝑒𝑑 𝑐𝑎𝑟, 𝑟𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 = ⊐  because convertible is a hyponym of car 

𝑟𝑒𝑑 𝑐𝑎𝑟 ⊐ 𝑟𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 
Example 2.  

If I were to change the edit e 
𝑒 = 𝑑𝑒𝑙(𝑟𝑒𝑑)  
𝛽 𝑒 = ⊏ because red is an intersective modifier 

     𝑟𝑒𝑑 𝑐𝑎𝑟 ⊏ 𝑐𝑎𝑟 
There are two important kinds of substitutions that require separate treatments: open-

class terms, which contain words that fall in and out of use (most nouns, verbs, adjectives, and 
adverbs) and closed-class terms, which change much less frequently, and generally cannot be 
defined by their extension, and rather are defined by their function (words like “from”, “most”, 
and “the”) (MacCartney, 2009). 
 

2.4 Substitutions of open-class terms 
 Open-class term substitutions are perhaps the greatest example of the usefulness of 
Natural Logic. Over the past 50 years, people have created an excessive amount of information 
about open-class terms, and compiled them into databases (like WordNet), which encode 
relationships like synonymy, hyponymy, and antonymy. Conveniently, these relationships are 
easily aligned with corresponding entailment relations (MacCartney, 2009). 
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Synonyms :    ≡ relation (sofa ≡couch, happy ≡ glad, forbid ≡ prohibit);  
hyponym-hypernym pairs :  ⊏ relation (crow ⊏ bird, frigid ⊏ cold, soar ⊏ rise);  
antonyms :    | relation (hot |cold, rise | fall, advocate | opponent). 
 

As a simple example: 
   a = unmarried man   b = bachelor 

𝛽 𝑠𝑢𝑏(𝑎, 𝑏) = ≡  
 

2.5 Substitutions of closed-class terms  
The set of closed-class terms contains within it conjunctions (and, or), articles (the, a), 

demonstratives (this, that), prepositions (to, from, at), and generalized quantifiers. I found the 
least amount of research on this, and so there is a lot of room for improvement here. 

Handling demonstratives like “this” and “that” is a fairly simple process in some regimes, 
but can be quite difficult in Natural Logic, as there is no real mechanism for anaphora. Natural 
Logic, as it is now, is not used as a dynamic logic – it seeks to relate one expression to another, it 
does not develop relations throughout a text, building on the meaning of an expression as more 
information is provided. In this same point, it does not seek to account for the problem of 
anaphora, which is perhaps most elegantly handled by Kamp’s Discourse Representation Theory 
(DRT); as this does not seem to be a topic currently undergoing research, a short discussion of a 
possible extension of Natural Logic and DRT is offered in section 4. 

Substitutions of prepositions like ‘from’ and ‘to’ seem manageable, but not generalizable; 
it seems possible to generate a relationship between each preposition, manually, as there are a 
relatively small number of prepositions. I have found little work on this, and from my own 
reasoning it does not seem to inform us very much. The expression “I walked to the bank”, 
informs us very little about if “I walked from the bank.” For the purpose of computation, edits of 
prepositions should be avoided to retain as much information as possible. 

Substitutions of Generalized Quantifiers, like: “Some”, “All”, “More than 3 elephants” 
are perhaps the most approachable. Most obviously, it is obvious that “every cat eats” implies 
that “some cats eat” (provided there are cats!). General Quantifiers are largely governed by rules 
of monotonicity, which are easily computed, and these lexical edits will not be made explicit 
here. It is important to note, however, that like all difficult linguistics question, substitutions of 
General Quantifiers do not end with logic, and Natural Logic is forced to engage in Gricean 
questions like: does “I have four children” ⊏  “I have two children”, or does “I have four 
children” | “I have two children”. 

Logical conjunctions like ‘and’ and ‘or’ will be briefly discussed in the upcoming section 
“Semantic composition – Projectivity”. 

 

2.6 Generic deletions and insertions 
 The general approach to deletions and insertions is to apply monotonicity. It is clear, 
without much explanation that “the car which has been parked outside since last week” ⊏  “car”. 
The original example in the Lexical Entailment section should be looked at in this lens 
(MacCartney, 2009). 
 

2.7 Special cases of deletions, insertions, and substitutions 
Unfortunately, generic deletions and insertions only get us so far. In the following section 

I will discuss two, notable cases where humans infer entailment relations that differ from what 
Natural Logic would predict: factives and implicatives, and non-subsective modifier adjectives. 
In principle, this section is the most problematic for the application of Natural Logic because it is 
generally difficult to tell if a phrase deserves special treatment or not. 
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Factives & Implicatives 
Implicatives are phrases that have a specific entailment that is dependent on the polarity 

of the context. There exist different types of implicatives (namely, different varieties of two-way 
and one-way implicatives), but their premise is the same – entailment relations follow rules 
depending on context, which need to be accounted for. Factives and counterfactives act similarly 
to implicatives, except rather than entailment they encode presuppositions. This means that in all 
contexts, the presupposed statement is either always true or always false. 

Here is a specific cases for intuition about both factives and implicatives: 
 

 Remember To: Two-way Implicative  ++|-- 
 Remember That: Factive 
a. She remembered to lock the door. ENTAILS.  She locked the door. 
b. She did not remember to lock the door. ENTAILS.  She did not lock the door. 
c. She remembered that she locked the door. PRESUPPOSES.  She locked the door. 
d. She did not remember that she locked the door. PRESUPPOSES.  She locked the door 
 

There are a lot of interesting nuances in the nature of implicatives and factives, and an entire 
squib could be devoted to this topic alone (I suggest reviewing Lauri Karttunnen’s “From 
Natural Logic to Natural Reasoning”), however, I discuss this topic here not to do investigate 
proper treatment of factives and implicatives, but rather to point out that human beings often 
make inferences beyond the logical entailment and presupposition of implicatives and factives.  
 Under closer inspection, Karttunen observes that one-way implicatives, which entail a 
definite entailment one-way, are often are interpreted as if they were a two-way entailment, 
though may be ‘canceled out’ explicitly, which Karttunen calls soft inferences (2015). Here is 
an example of a one-way implicative “prevent” (+-) 

a. The language barrier did not prevent us from sharing a few laughs. 
b. Her mother did not prevent her from visiting her father, but she never did. 

Both cases are perfectly acceptable to say though entail opposing inferences. Karttunen proposes 
that these problems are caused by conditional perfection, which pushes people to interpret simple 
conditionals like if p then q as biconditionals, iff p then q. In my opinion, this relates to some 
kind of Gricean Maxims pushing people to assume the most informative statement is being said. 
 Unfortunately – the process for determining if an expression behaves as a factive or 
implicative is not straightforward: “The sobering finding of this study that we are now in the 
progress of replicating with a more careful experimental design suggests that some very basic 
inferences such as whether the event described by an infinitival complement happened or not 
depend on opinions that are not part of the literal meaning of the sentence. This is a difficult 
problem for compositional semantics and for Natural Logic as well” – Kartunnen (2015). 
 

  Non-subsective adjectives 
Touching the core of the problem with entailments and presuppositions, I now continue to Ellie 
Pavlick’s research on non-subsective adjectives. 
 Here is a visual description of three, important different types of adjectives:  

 
Figure 5. Categorization of Adjective types (Pavlick, 2017). 
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Words like fake, former, and alleged generate the | relation (a fake diamond is not a diamond), 
but words like alleged are less clear – an alleged thief might be a thief. Each of these types of 
adjectives seem to hint very heavily towards specific entailment relations 

subsective adjectives:     𝑟𝑒𝑑 𝑐𝑎𝑟 ⊏ 𝑐𝑎𝑟 monotonic  entailment 
plain non-subsective adjectives:  𝑡ℎ𝑖𝑒𝑓 # 𝑎𝑙𝑙𝑒𝑔𝑒𝑑 𝑡ℎ𝑖𝑒𝑓 unknown 
privative non-subsective adjectives:  𝑓𝑎𝑘𝑒 𝑔𝑢𝑛 | 𝑔𝑢𝑛   alternation 

The question now becomes – how can one label adjectives productively? Pavlick conducted 
research using Amazon’s Mechanical Turk program to generate empirical readings on specific 
words to the type and degree of entailment generated by an adjective (2017).  

 
Figure 6. Illustration of entailment relations generated by insertion of an adjective. Generated by Amazon 

Mechanical Turk (Pavlick, 2017). 
 

These findings unfortunately generated rather blurry delineations on the entailment of an 
adjective. This by itself is problematic for assign lexical entailments when adding, deleting, or 
substituting such an adjective, though at least provides computer scientists with a tool for 
generating a numeric confidence level of a type of adjective. 

Pavlick goes about trying to solve the problems generated by non-subsective adjectives 
by claiming that nouns are assumed to be “present, salient, and relevant”, and so – “modifiers 
that communicate presence and saliency tend to be entailed, regardless of the noun with which 
they are being composed or the context in which it appears, while modifiers that communicate 
absence or irrelevance tend to generate contradictions.”  

It seems that rather than being able to assign an entailment relation to a specific adjective, 
entailment relations depend on the word’s usage in a specific sentence. To illustrate this, I 
present one of Pavlick’s most famous examples: when asked about the sentence, “Bush travels to 
Michigan to remark on the economy", people respond confidently that “economy" refers to 
“American economy", and inserting “Japanese” before economy, would yield a contradiction. 
However, the sentence “Bush travels to Michigan to remark on the Japanese economy", humans 
agree that this entails “Bush travels to Michigan to remark on the economy" (Pavlick, 2017). 

Pavlick’s work provides further evidence against the usefulness of creating lexical 
entailment relations, arguing, similarly to Lauri Karttunen, that at the end of the day, the 
entailments of words depend more on the meaning of the words themselves than their 
relationships. Compositional semantics depends enough on the actual semantics of the words and 
pragmatics of the sentence that one cannot generate generalizable rules, productively. 
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Still, it is obvious to everyone reading this that there are problems with Natural Logic, 
because if it were a solved problem, no one would be worrying about natural language 
inferences. So, I will abstain from publishing my PhD thesis just yet, and continue to the 
following step in semantic composition – projection. 

 

2.8 Semantic composition- Projections 
 Here I seek to address the question of how is lexical entailment relation is affected by 
semantic composition with respect to the remainder of the expression (the context).  Namely, 
how does the lexical entailment project through an expression. Given how x and y are related, 
𝛽 𝑥,𝑦 ∈ {𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠}, and given for any edit 𝑓 ∈ {𝑒𝑑𝑖𝑡𝑠}, 𝛽 𝑥, 𝑓(𝑥) , can I make 
a claim about 𝛽 𝑓(𝑥), 𝑓(𝑦) = ?∈ {𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠}? 

To gain intuition, first I will present an example using monotonicity: 
Upon hearing the sentence: Nobody can enter without pants – (nobody(can((without pants) 
enter). Is it clear if ‘anyone can enter without clothes?’ 

Pants ⊏ Clothes 
Without:  ↓ (‘Without’ is downward monotonic) 

Without↓ pants ⊐ Without clothes 
Can:  ↑ (‘Can’ is upwards monotonic) 

can↑ (without pants) enter ⊐  can (without clothes) enter 
Nobody:  ↓ (‘Nobody’ is downwards monotonic) 

Nobody↓ (can↑ (without ↓ pants) enter) ⊏ Nobody(can(without clothes) enter)  
No one can enter without clothes. 

This example of monotonicity seems straightforward, akin to multiplication by +/- 1. 
MacCartney seeks to generalize this to any kind of entailment relation, not only semantic 
containment. In theory, for each 𝑓 there are 77 (823,543) possible entailment projections 
signatures (in 𝔅): 

≡ ⊏ ⊐ ^ | − # 
 

A B C D E F G 
As,	∀x ∈ A,… ,G , x ∈ 𝔅,	and	 𝔅 = 7	

 

This is not ideal, but it turns out that upon closer inspection, relatively few projections are really 
used; MacCartney’s thesis maps out a few important projectivity signatures. Though these 
projectivity signatures cannot generally be proven rigorously, they can be shown empirically to 
hold in most cases. The generation of projectivity signatures is a labor-intensive job, which 
Amazon Mechanical Turk seems ideal for. However, for this review paper, I will accept 
MacCartney’s signature maps as correct; and here I present a set of projectivity signatures for 
logical connectives: 

 
Figure 7. Projectivity signatures for logical connectives (MacCartney, 2009). 
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And for comparison, I also present the projectivity of quantifiers, which take two arguments: 

 
Figure 8. Projectivity signatures for quantifiers connectives (MacCartney, 2009). 

 

For intuition, I will take apart a simple example of projecting through the word “most” with a 
substitution. I start with the sentence “Most people were early”, and ask ‘how many people were 
late?’ 
 Let f = most(a,b) 
 a = ‘people’ 
 x = ‘early’ 
 y = ‘late’ 
 𝛽 𝑥,𝑦 = | 
 𝛽 𝑓(𝑎, 𝑥), 𝑓(𝑏,𝑦) = | 
 Most people were early | Most people were late 
 This same operation, with f = some(a,b) 
 Tells me that if ‘some people were early’ I do not know (#) if ‘some people were late’ 
 

There are a lot of # relations and these projectivity signatures are not necessarily helpful. It does 
not help many scientists that ‘most fish talk’ # ‘most birds talk’ (MacCartney, 2009). 
 

Caveats to Projectivity 
For the most part these projectivity signatures are approximations (except in the case of 

negation, which can be proven to be exact), However, these approximations are not simply a 
function of statistical noise, many of them have a distinct source, which Natural Logic (as it is 
now) is not accounting for; the projection of a given entailment relation can depend on the value 
of the other argument to the function. That is, if I am given 𝛽(𝑥,𝑦), and I am trying to determine 
its projection 𝛽(𝑓 𝑥, 𝑧 , 𝑓(𝑦, 𝑧)), the entailment relation can depend not only on the properties of 
𝑓, but also on the properties of z. As a simple example:  

Take  x = French man  
y = European man 

  z = Parisian 
  𝛽 𝑖𝑛𝑠𝑒𝑟𝑡 𝑥, 𝑧 , 𝑖𝑛𝑠𝑒𝑟𝑡 𝑦, 𝑧 =⊏  as Parisian is intersective 
However, in this case, it is clear that ‘a Parisian, French Man’ ≡ ‘a Parisian, European Man’. 
 This caveat furthers the importance of the problem that Pavlick is addressing. The actual 
semantics of the words seem to matter – Natural Logic is unable to project universally. 
 

3. Putting it all together: Algorithmically 
 

I have now developed all the necessary prerequisites, and I now present an algorithm for 
creating natural language inferences using Natural Logic. 
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Goal: Given expressions p and h, compute some inference about h from p.  
Natural Logic approach: Relate expressions p and h with an entailment relation (in 𝔅). 
 

1. Find a sequence of atomic edits <e1,…,en> which transforms p into h: 
h= (𝑒! ∘… ∘ 𝑒!) ∘ 𝑝 . I define 𝑥! = 𝑒! ∘ 𝑥!!! 

2. For each 𝑒! 
a. Determine the lexical entailment relation  𝛽 𝑒! = 𝛽 𝑥!!!, 𝑒!(𝑥!!!)  
b. Project 𝛽(𝑒!) to find the entailment relation 𝛽 𝑥!!!, 𝑥! for 𝑖 = 1,… ,𝑛 − 1 

For notational consistency with other work, I will write this as 𝛽 𝑥!!!, 𝑒!  
3. Join atomic entailment relations across the sequence of edits: 

𝛽 𝑝, ℎ = 𝛽 𝑥!, 𝑥! = 𝛽 𝑥!, 𝑒!  ⋈ ⋯ ⋈ 𝛽 𝑥!!!, 𝑒! ⋈ ⋯ ⋈  𝛽 𝑥!!!, 𝑒!  
 

For the benefit of the reader, it is important to state that the Manning Lab (Stanford) developed a 
Java program called NatLog applying this algorithm, though I will not go into specific 
implementations here. However, in 2009, it competed with the state-of-the-art Natural Language 
Inference softwares, and performed with 70.5% accuracy on the FraCas (three-way 
classification) test set. 

 
 

4. Conclusions and Extensions 
 

In this review paper, my goal has been to develop a broad understanding of Natural 
Logic, how it can be used, and some problems in it. I now wish to end this review with a short 
description of the issues currently facing Natural Logic that should be addressed, and possible 
directions that could be taken in addressing them.  
 

1. The ability to infer depends heavily on non-deterministic processes of finding an 
appropriate edit sequence connecting p and h 

2. The usefulness of the result is sometimes limited by the tendency of the join operation 
toward less informative entailment relations 

3. People understand inferences to be different from what Natural Logic says they 
should be 

4. People infer inferences beyond what Natural Logic tells us 
5. Natural Logic is used statically 

 

Problem 1 lends itself well to the tools found in computer science. While creative 
processes are difficult for computers, it is very simple to run many iterations of the same 
algorithm over different edit sequences, until a sufficiently good sequence is found. Probabilistic 
model checking algorithms and variations of randomized Monte-Carlo methods seem to be a 
good tool for generating appropriate edit sequences.  
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As for problem 2, it seems the information-lossy joining process is unavoidable; I do not 
have a solution, and would like to emphasize that this should not be brushed off lightly. The only 
solution that seems intuitive is to apply the same approach as with problem 1, and run many 
iterations of this algorithm, ultimately choosing the sequence of edits through which the joining 
process loses the least amount of information.  This problem warrants serious consideration, and 
possibly is enough of a reason by itself to avoid Natural Logic all together. 

Ultimately problem 3 and problem 4 seem to stem from the same source – a lack of world 
knowledge and pragmatics in computation. “If humans exploit context in order to make 
inferences that may not be explicitly justified by formal reasoning, our automatic systems should 
learn to do the same.” (Pavlick, 2017). Progress in pragmatics is mandatory for progress in 
natural language inferences – as to how specifically this should be done. Some kind of 
computationally-driven approach to Gricean Maxims is a promising direction for developing 
more nuanced inferences. While, I will not set out to posit what such an approach might be, I 
believe Karttunen’s consonance/dissonance effect and Pavlick’s study on the explicit and 
implicit saliency of nouns is promising. 

Problem 5 does not seem to be addressed by researchers in the field; however, I believe 
that accounting for this will address more than one of these problems. Natural Logic seeks to 
relate one expression to another, it has static representations that require precomputation, but 
provide no means for context-driven computation. This seems like an improper focus, as Pavlick 
states “The main concern from the point of view of an NLP system is not whether the set of 
‘imaginary cats’ is a subset of the set of ‘cats’, but rather: can we infer that a particular mention 
of ‘cat’ is an ‘imaginary cat’ ”. It seems reference and extension is far more important than sense 
and intension – and so, Natural Logic needs a means for addressing anaphora; I believe that the 
solution is an extension of Discourse Representation Theory (DRT), or some other dynamic 
logic.  

DRT seeks to address the problem of anaphora by developing structures that have a 
mechanism for defining individuals and disambiguating referents. A possible extension of 
Natural Logic would be to use it in a similar format to DRT, developing Discourse 
Representation Structures (DRS) using Natural Logic instead of FOL, and connecting them using 
the techniques developed in DRT. Thus, when discussing the ‘Japanese Economy’ as variable x, 
one is able to refer to the variable x, knowing that it is indeed an ‘Economy’, all while retaining 
the usefulness of Natural Logic in generating entailments.  
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